Clean Cooling – the new “Frontier Market” for UAE and the GCC region

Please access the full article here.


The Ministry of Climate Change and Environment of the UAE and the EU GCC Clean Energy Technology Network in partnership with the University of Birmingham and the Heriot-Watt University organise a two days EU -GCC event on<Clean Cooling – the new “Frontier Market” for UAE and the GCC region >, on 9-10 April in the UAE. (venue – location to be provided by the ministry and confirmed soon)


Two-thirds of UAE energy in the summer months is consumed by air-conditioning; at peak temperatures, this can rise to 95%. Across the Gulf, cooling represents a yearly fuel opportunity cost of roughly US$20 billion. But meeting the projected cooling demand growth in the GCC over the next 12 years is projected to cost approximately US$100 billion in new cooling capacity and over US$120 billion in new power capacity if existing pattern of technology deployment are maintained. Without intervention, reports predict Saudi Arabia could within the next decade be consuming more oil to drive air conditioning than it exports.

Cooling loads are not just buildings and electricity.  In hot climates, air conditioning in public vehicles will consume more than 40% of a bus’ fuel. This energy demand is a major challenge for electric buses. Refrigerated trailers are cooled by a secondary diesel engine (transport refrigeration unit) that can emit up to six times as much nitrogen oxides (NOx) and 29 times as much particulate matter (PM) as the propulsion unit. As with air conditioning, demand for transport refrigeration is forecast to soar. The global cold chain market alone is projected to grow to $270Bn by 2022 (currently $190Bn) with the greatest increase in demand coming from the Middle East, as well as the rapid expansion in emerging markets such as China, India, and Brazil. In UAE, 80% of food is imported through global logistics chains.

We don’t however simply need more efficient air-conditioners and fridges or transport refrigeration units; we need new integrated, system-level approaches to cooling, understanding the size and location of the multiple thermal, waste and wrong-time energy resources available and the novel energy vectors, thermal stores and the novel, clean cooling technologies appropriate for the societal, climate, and infrastructure context.

Workshop objectives

To develop new ideas and methods to address the cooling challenges of the region,  this “clean cooling” workshop is organised with in-country partners and key stakeholders (government, industry, energy users, academia and government) from the UAE, the GCC and the EU to better understand the opportunities linked to integrated, low-carbon, low emissions cooling systems and how to accelerate their deployment.  Findings and recommendations will help shape thinking in-country as well as feed into the first ever International Clean Cooling Congress to be held at the University of Birmingham in April (18th and 19th).

The workshop intends to provide an overview of relevant best practices and technologies from the EU and the UAE/GCC.  The aim is to use the workshop as a catalyst to create dialogue and new EU GCC academic and industry collaborations to share knowledge; build capacity, underpin and galvanise novel “clean cooling” technology demonstration and advancement opportunities around the local and global challenge of sustainable cooling. In so doing, it will build on existing leadership and expertise in energy and specifically cooling across the two markets (UAE/GCC and EU) at a unique time where delivering clean, sustainable cooling is being recognised globally as key to our energy and environmental challenges.

To stimulate the discussion, experts will present novel system level thinking as well as examples of a radical novel technologies for meeting both built environment and transport cooling demands.

Our objectives from the event would include clear recommendations and next steps to

  • develop new sustainable, integrated system approaches to cooling (built environment but also the major demand of cooling in transport);
  • demonstrate and integrate emerging and existing technologies;
  • deliver solutions into the region;
  • identify and develop new technologies for local markets and global application.


Cooling Sector Profiles Now Available to Download!

coolingEU in collaboration with its supporters and observes, has elaborated 9 fact-sheets with information about the different cooling sectors.

With these publications, we aim at providing a general overview on the importance and diversity of the cooling sectors in Europe.



Iconset - flat - Communication 01   Contributor: Danfoss

Iconset - flat - Communication 01



Iconset - flat - Communication 01   Contributor: Euroheat & Power

Iconset - flat - Communication 01




Iconset - flat - Communication 01   Contributor:  ECSLA

Iconset - flat - Communication 01




Iconset - flat - Communication 01   Contributor: ECTP

Iconset - flat - Communication 01




Iconset - flat - Communication 01   Contributor: EGEC

Iconset - flat - Communication 01




Iconset - flat - Communication 01   Contributor: EVA

Iconset - flat - Communication 01




Iconset - flat - Communication 01   Contributor: FRESHFEL

Iconset - flat - Communication 01




Iconset - flat - Communication 01   Contributor: SEDC

Iconset - flat - Communication 01



Iconset - flat - Communication 01   Contributor: Solar Heat Europe

Iconset - flat - Communication 01



Estimation of European Union residential sector space cooling potential


Mindaugas Jakubcionis and Johan Carlsson


  • An estimation of EU space cooling demand potential in residential sector is presented.
  • An estimate of space cooling demand potential is based on using USA data as a proxy.
  • Significant cooling demand increase can be expected.
  • Cooling demand increase would lead to increased stress in energy supply systems.
  • Proper policies and strategies might measurably decrease the impact on energy systems.


Data on European residential space cooling demands are scarce and often of poor quality. This can be concluded from a review of the Comprehensive Assessments on the energy efficiency potential in the heating and cooling sector performed by European Union Member States under Art. 14 of the Energy Efficiency Directive. This article estimates the potential space cooling demands in the residential sector of the EU and the resulting impact on electricity generation and supply systems using the United States as a proxy. A georeferenced approach was used to establish the potential residential space cooling demand in NUTS-3 regions of EU. The total potential space cooling demand of the EU was estimated to be 292 TW h for the residential sector in an average year. The additional electrical capacity needed was estimated to 79 GW. With proper energy system development strategies, e.g. matching capacity of solar PV with cooling demand, or introduction of district cooling, the stresses on electricity system from increasing cooling demand can be mitigated. The estimated potential of space cooling demand, identified in this paper for all EU Members States, could be used while preparing the next iteration of EU MS Comprehensive Assessments or other energy related studies.

The open access to this study is funded by the Joint Research Center via sciencedirect.

To access the full publication please click here


coolingEU Communication Paper

The coolingEU Communication Paper is now available!

Learn more about cooling in Europe and our work and aims for 2017!


Please click on picture to access the coolingEU Communication Paper



INDIGO Project – The issue #2 of the project’s Newsletter is out.


Don’t miss INDIGO’s latest video: Indigo – Partners Interview

Keep updated!
Twitter @INDIGOprojectEU
LinkedIn @INDIGOprojectEU
YouTube @INDIGOproject

Retail Refrigeration: Making the Transition to Clean Cold

Original article here

By one estimate, greenhouse gas emissions from cooling account for 7% of global emissions, double that of aviation and shipping combined. Sustainable refrigeration systems are essential for the world to meet the demands of a growing population whilst addressing climate change.

Retail Refrigeration: Making the Transition to Clean Cold, supported by Emerson, a global refrigeration technology and engineering company, examines what the move to natural refrigerants means for retailers and the opportunity to consider overall store and system architecture to deliver broader longer term benefits.


Although progress is being made, retailers are not transitioning from hydrofluorocarbons (HFCs ) to natural refrigerants quickly enough to meet phase-down targets. Equally, while phasing down HFC refrigerants will be a huge step forward for climate change, energy consumption remains a bigger challenge.

As retailers make the transition it is important they consider the whole system impacts of refrigeration, not just the need to meet refrigerant targets. In particular, the long term energy efficiency of wider system needs must be considered to ensure that any refrigeration technology selected maximises the overall environmental benefits and economic opportunities. Retailers should also take into account the complexity of installation and long term maintenance requirements of different technologies, which can have a significant impact upon performance and cost.

The role of government

Governments have a critical role to play in encouraging retailers to transition to natural refrigerants and to ensure that the solutions adopted deliver maximum long term benefit. In particular, governments should invest significantly more into research and development of sustainable refrigeration and its integration within energy systems. They should also support the development of a clear pathway for sustainable refrigeration, not just low global warming potential (GWP) refrigerants but total system level approaches.

Governments also need to provide incentives, not just penalties, for end-users to accelerate transition to low-impact systems. They should also invest in the skills required to support the long term transition to both natural refrigerants but also clean cooling, recognising that an expanded workforce, with new competencies and certifications, is going to be required.

Professor Toby Peters, Professor, Cold Economy, University of Birmingham


coolingEU Breakfast Debate at the European Parliament

On 26 September 40 stakeholders from politics, various industry sectors, academia and research gathered for the coolingEU Parliamentary Breakfast. Hosted by Martina Werner, MEP, supporters and observers of the forum discussed with the participants about possible ways forward towards an integrated and sustainable cooling sector that contributes to Europe’s fight against climate change.

Following a steep development and its official launch in June 2017, the coolingEU forum invited all interested stakeholders to join for a discussion on five core questions around the future of cooling. Thanks to Martina Werner’s willingness to host the coolingEU forum for a parliamentary breakfast the discussion event could take place within the walls of the European Parliament. Over the course of 2.5 years, the stakeholders involved in the forum worked on core barriers for a more sustainable cooling sector in the future. Without focusing on a specific sector the forum had looked into cross-sectorial issues, be it in high-temperature cooling in manufacturing industries, cooling of buildings or the refrigeration of food, stationary cooling or cooling in transport. The resulting questions were presented at the forum’s launching event in June and put forward for public discussion at this Parliamentary Breakfast on 26 September.


Following the introduction by Martina Werner, outlining the important role cooling is to play in the energy sector of the future and how crucial sustainable solutions are, Ingo Wagner, coordinator of coolingEU presented the format and background of the breakfast. With Professor Toby Peters it was the task of the Chair of the Academic Mirror Group to give a brief insight in the world of future technologies. To ensure that these technologies could be used to their full potential, they will have to be showcased together in living labs. As it turns out this would also raise what was needed so much to create momentum: awareness, a key issue discussed with Anne-Claire Streck from ECTP. Awareness that is according to Vincenzo Belletti, EHPA, also key for data collection as only awareness creates the attention that is needed to promote the communication of data. Building on this Martin Dieryckx, EPEE, outlined that policies had an important roles to play in these developments as well as for the roll-out of sustainable technologies on the market. Only when their contributions are recognized by policies, new and existing cooling technologies could be successful across Europe. Closing the event, Martina Werner welcomed the outcomes of the discussion and invited the forum to continue the exchange in the future.

The supporters and observes of the coolingEU forum would like to thank Martina Werner for hosting this discussion and all speakers and participants for their contributions. We are looking forward to further events and exchanges.

If you want to learn more about the activities of coolingEU, please do not hesitate to contact the secretariat via email under


Using Deep Cold Coastal Seawater for Cooling

Original article here

Several coastal cities located in warm climates have a deep seafloor within less than 50 miles of the coastline. This cold seawater offers numerous benefits.

The Toronto Precedent

Several years ago, the City of Toronto’s water department in Canada installed an insulated water source pipe to access cold potable water from near the bottom of Lake Ontario. During the northern summer and prior to arriving at the water purification plant, that cold water passes through a heat exchanger to provide district cooling to several office towers located in the business district.

A cubic unit of that water provides over 3,400 times the heat capacity of the equivalent cubic unit of air. The result has been a massive reduction in energy consumption to cool building interiors.

Cold Tropical Seawater

While tropical surface seawater temperature may exceed 25 degrees Celsius, deep level seawater at 1,000 meters (3,300 feet) depth is at five degrees Celsius. Energy researchers used that difference in temperature to develop ocean thermal energy conversion engines located off the coasts of Hawaii and India that generate electric power.

However, many coastal cities have seafloor depths below 1,000 meters within less than 100 miles of land, allowing for possible installation of submerged insulated pipelines between the city and the greater depths. At some coastal cities, seafloor depths of 2,000 meters are within this distance.

The following cities are within 60 miles of 2,000 meters seafloor depth: San Juan, Recife, Santander, Cartagena, Toulon, Nice, Algiers, Western Crete, Antalya, Muscat, Chennai, Alexandria, Lagos, Port Elizabeth, East London, Nassau, Montego Bay, Cartagena, Port Macquarie and Sydney.

The following cities have cold ocean currents and 1,000 meter depth near the shore: San Juan, Lima, Valparaiso, Antofagasta, Cape Town, Perth, Albany, San Francisco, Ft Bragg, and Wellington.

Applying the Toronto Precedent

Coastal cities in tropical climates may borrow the Toronto summertime precedent of passing cold lake water through heat exchangers to cool buildings. These cities may draw cold seawater through insulated pipes from offshore depths and pass the cold seawater through counter-flow heat exchangers to cool a secondary stream of water flowing inside a closed loop pipe.

The heated seawater would be released back into the sea while the cooled water inside the closed loop pipe would flow to a large number of buildings in the coastal city, to provide low-cost cooling while reducing summertime air-conditioner related electric consumption.

While the Toronto potable-water based system is restricted to a small section of the city, an ocean based cold-seawater based system can be built to many times the order of magnitude and encompass a much larger section of the city. As a result, the reduction in air-conditioner related electrical consumption will be many times that of Toronto.

A cold seawater based system could also sustain the summertime operation of industrial refrigeration systems. Coastal cities such as Muscat (Oman), Chennai and Cape Town could achieve many times the summertime reduction in electric energy of Toronto.

Potable Water-from-Air

Numerous companies are offering home-based and office based water-from-air technology, essential modified dehumidifiers that include UV-radiation treatment of the water and addition of minerals. These companies estimate that the atmosphere may hold over 1 million liters of potable water per capita. Many coastal cities located at tropical and subtropical locations experience hot and humid summer weather with air temperatures exceeding 30 degrees Celsius or 86 degrees Fahrenheit and a dew point of under 10 degrees Celsius. Cold water at under 10 degrees Celsius flowing through a radiator could help extract potable water from humid air.

Deep level coastal seawater could provide the necessary cooling capacity to extract potable water from humid air, using arrays of railway locomotive size radiators located sufficiently high above sea level so as not to be in the stream of coastal ocean spray.

During humid weather, any of coastal winds, drafting fans or chimney convection currents could draw humid air across the radiators to extract several thousand liters of potable water per day. Tall solar heated chimneys could draw through circular arrays of cooled radiators and perhaps deliver several hundred thousand liters of potable water per day.

Water Inside Buildings

Several companies are now marketing modified, electrically powered air dehumidifiers that not only extract water from humid air but also sanitize the water using intense UV-light treatment. Further treatment of water may include addition of minerals. Larger versions of this technology may be used in office towers.

At coastal cities where deep sea cold water is available, tall waterfront buildings have the option of using a cold stream of piped water to cool the condensers of water-from-air machines that provide several hundred liters of water per day and sufficient for the requirements of occupants of these buildings.

Economy of Scale

Economy-of-scale would justify the installation of several miles of insulated cold water pipe on the sea floor extending to depths of 1,000 meters to 2,000 meters combined with mega-size, submerged heat exchangers near the shore to transfer hear from a shore-based, closed loop insulated piping system of cold water. The closed-loop pipe of cold water would need to connect with a large number of tall office towers and related buildings located in a central business district to replace air conditioners. It would also need to connect to several large-scale, water-from-air extraction units to provide potable water.

Each building would include multiple small water-from-air extraction units, while either the municipality or related water distributor would operate multiple mega scale, water-from-air installations to extract potable water that it would add to the local water distribution system.

The onshore ocean thermal energy conversion installation at Hawaii is rated at 100 megawatts suggesting that a large-size pipe could source sufficient deep sea coastal cold water to sustain the operation of a district cooling system at a large coastal city. Populations of suitable coastal cities are provided:

Chennai, India
7 million
Muscat, Oman
1.5 million
Perth, Australia
2 million
Sydney, Australia
5 million
Cape Town, South Africa
4 million
Port Elizabeth, S. Africa
1.3 million
Alexandria, Egypt
4.5 million
Oran, Algeria
1.4 million
Algiers, Algeria
3.4 million
Low-Grade Thermal Energy

In India and Hawaii, cold deep seawater at five degrees Celsius drawn through insulated pipes serves as the heat sink for ocean thermal energy conversion, with near surface seawater at 25 degrees Celsius as the high temperature reservoir.

Several countries such as Japan and South Africa (Cape Town) operate steam-based thermal power stations located next to the coast, where seawater cools the exhaust steam condensers that then release heated seawater at 40 degrees Celsius into the ocean. The exhaust heat from coastal steam-power stations could sustain the operation of modified ocean thermal energy conversion installations and perhaps generate enough power to sustain 50,000 to 100,000 homes.

Increasing population and unpredictable weather patterns could encourage many coastal cities that face water shortages, to operate desalination plants in addition to water-from-air installations. Where space is available, brine could be deposited in specially excavated coastal brine ponds that capture solar heat and raise brine temperature to 60 to 90 degrees Celsius. The temperature difference between the brine ponds and piped in deep cold seawater could sustain the operation of Organic Rankine Cycle engines either to produce electric power after sunset, or even store enough heat overnight to generate early morning peak electric power.


Many coastal cities in warm climates have a sea floor drops that to great depth near the coast. These cities will have access via insulated pipeline located on the sea floor, to cold seawater at five degrees Celsius. Given that seawater has 3,600 times the heat capacity of the equivalent cubic unit of air, many coastal cities may use the cold deep seawater to cool the interior of buildings and to operate large-scale, water-from-air extraction units cooled by cold seawater, to supplement the supply of stored rainwater and water obtained through seawater desalination.

The opinions expressed herein are the author’s and not necessarily those of The Maritime Executive.

Industrial Refrigeration Systems Market worth 23.22 Billion USD by 2022

(Original post here)

According to the market research report Industrial Refrigeration Systems Market by Equipment (Compressors, Condensers, Evaporators), Refrigerant Type (Ammonia, CO2, HFCS), Application (Fruits & Vegetables Processing, Beverages, Refrigerated Warehouses), & Geography – Global Forecast to 2022″.

• Get Informative PDF Brochure:

The industrial refrigeration systems market is expected to reach USD 23.22 Billion by 2022, at a CAGR of 5.24% between 2016 and 2022.

• For More Information:

The market for CO2-based refrigeration systems expected to grow at the highest rate during the forecast period

The market for CO2-based industrial refrigeration systems are expected to grow at the highest rate during the forecast period owing to the benefits it offers, such as excellent thermodynamic properties, high energy-efficiency, zero-toxicity, and non-flammability. Many food and beverage industrial players, especially across developed economies in the North America and Europe region have shifted towards the usage of CO2 as a preferred refrigerant type, especially as a secondary refrigerant and also in the cascade systems.

Refrigerated warehouses application held the largest share of the industrial refrigeration systems market in 2015

Industrial refrigeration systems are most widely used in the refrigerated warehouses industry, which is further expected to hold the dominance in the near future as well, closely followed by fruits and vegetables processing application. Many industrial refrigeration systems manufacturers have started offering natural refrigerants compatible products and equipment, and low- global warming potential (GWP) and low- ozone depleting potential (ODP) refrigerants, which are being developed for replacing their comparatively high-GWP and high-ODP refrigerants counterparts, to follow strict adherence to the regional and international regulatory standards.

North America held the largest market share in 2015

North America held the largest market in 2015, followed by Europe and Asia-Pacific for industrial refrigeration systems. The U.S. held the largest share of the North American industrial refrigeration systems market owing to strong demand from refrigerated warehouses, and food and beverage processing applications.

Major players in this market include Johnson Controls, Inc. (U.S.), Emerson Electric Co. (U.S.), Ingersoll Rand Plc (Ireland), GEA Group AG (Germany), The Danfoss Group (Denmark), Daikin Industries, Ltd. (Japan), United Technologies Corporation (U.S.), Mayekawa Mfg. Co. Ltd. (Japan), Evapco, Inc. (U.S.), LU-VE Group (Italy), Lennox International Inc. (U.S.), BITZER Kuhlmaschinenbau GmbH (Germany), and Baltimore Aircoil Company (U.S.).

EU LIFE Project on Flammable Refrigerant Options for Natural Technologies – Improved standards & product design for their safe use

HEAT together with the project partners ECOS, AHT, ait-deutschland GmbH and NIBE AB recently won the Shecco lead project on “Flammable Refrigerant Options for Natural Technologies – Improved standards & product design for their safe use (FRONT)” funded by EU LIFE Climate Change Mitigation. LIFE FRONT is a demonstration project with best-practice elements, combining two main objectives under the Climate Action – Climate Change Mitigation 2016 priority area. Firstly, and as its priority, it aims to remove barriers posed by standards for flammable refrigerants in refrigeration, air conditioning and heat pump (RACHP) applications. As a second positive contribution, it increases the availability of suitable alternatives in those areas, by improving system design to address flammability risks to encourage the use of climate-friendly alternatives to fluorinated gases.
The project officially started in June 2017. For more information please contact

Cooling and refrigeration sector: the Cinderella of the EU’s energy system

Prof. Kostadin Fikiin, R&D Project Manager at the Technical University of Sofia explores in this article the situation of artificial cold in the global economy and reflects on the role of cooling and refrigeration in the EU energy policy. Find out more and access the full article here!

Cooling: A Sleeping Giant? Paving the way for a sustainable future

On 19 June 2017, more than 50 stakeholders interested in sustainable and clean cooling attended in Brussels the coolingEU Launch Event, entitled ‘Cooling: A Sleeping Giant? Paving the way for a sustainable future’.

general4  general5 general2

The workshop was divided in two sessions. One focused on the current state of cooling and the second one explored the characteristics of the different cooling sectors.

Andrea Voigt, EPEE, moderated the first session. The session started with a global perspective on cooling (with the keynote of Brian Holuj, UN Environment), narrowed down to a European approach (with the intervention of Ewout Deurwaarder, European Commission), then followed by an update on the situation of cooling from an academic perspective (by Prof. Kostadin Fikiin, Technical University of Sofia). Ingo Wagner, Euroheat & Power, closed the first session with a presentation introducing coolingEU and its latest developments.

The second session, moderated by Thomas Nowak, EHPA, drew a picture of the different cooling sectors, from the food sector (Cristine Weijer, ECSLA), to the manufacturing industries (Klaus Peters, ESTEP) and buildings (Anne-Claire Streck, ECTP) to demand response (Jayson Dong, SEDC).

The main takeaways from the workshop are:

  • The use of cooling covers a large variety of sectors and industries and its demand is growing rapidly, not only in Europe but also globally.
  • Without a substantial leap in visibility, an increase of research efforts, a prospering environment for sustainable solutions and strengthened cooperation of all involved, the impact on the climate and the energy system is unpredictable.
  • At the European level, cooling specific policy and reliable data are lacking.
  • The cooling sectors create jobs for almost 12 million employees around the world.
  • The refrigeration sector (including air conditioning) accounts for about 17% of the worldwide electricity consumption.
  • Giving the high energy demand for cooling, it is a matter of urgency to supply it in an efficient and sustainable way. This needs to be addressed effectively in order to achieve an efficient, competitive and secure energy system and ensure the success of the EU targets for efficiency and greenhouse gas emissions. The time for action is now!

Therefore, coolingEU:

1. Calls on Member States and European Institutions to recognise the importance of cooling and to address the development of the cooling market.
2. Calls for system-level approach for heating and cooling to be included in the European energy policy.
3. Calls on the EU to raise awareness on the importance of cooling among energy planners and citizens.
4. Calls for European Institutions to increase the targeted funding of Research and Innovation in the field of sustainable and efficient cooling and invest in Research and
Development (R&D).
5. Calls for the inclusion of cooling in statistics and coordinated collections of data.


Get more information by downloading the workshop presentations. Please see below:

14h00 – 15h30:  coolingEU – preparing for the future of sustainable cooling

Moderator: Andea Voigt, EPEE

– Brian Holuj, UN Environment


– Ewout Deurwaarder, European Commission


– Prof Kostadin Fikiin, Member of the coolingEU Academic Mirror Group,Technical University Sofia


– Ingo Wagner, coolingEU Coordinator, Euroheat & Power




16h00-17h30: The future of cooling – where it is needed, how it is used

Moderator: Thomas Nowak, EHPA

– Christine Weiker, ECSLA


– Klaus Peters, ESTEP


– Anne-Claire Streck, ECTP


– Jayson Dong, SEDC


Thank you for joining us! We hope to welcome you again in one of our next events. Stay tunned!